Design and Control of a Flapping Flight Micro Aerial Vehicle

نویسندگان

  • Lindsey Hines
  • William Messner
چکیده

Miniature flapping flight systems hold great promise in matching the agility of their natural counterparts, bees, flies, and hummingbirds. Characterized by reciprocating wing motion, unsteady aerodynamics, and the ability to hover, insect-like flapping flight presents an interesting locomotion strategy capable of functioning at small size scales and is still a current focus of research. A vehicle with the capabilities of a fly would have potential use as miniature nodes in sensor networks, near invisible surveillance platforms, and mobile vehicles in search and rescue. Designing and constructing such systems, however, is difficult. Beyond the limits of battery capacity and the difficulties of miniature sensor design, simply producing enough lift for liftoff is a challenge. A balance must be maintained between mechanical complexity, controllability, and weight. While more actuators generally lead to more controllable degrees of freedom, they also contribute significantly to system mass. In light of these constraints, we choose to utilize passive behavior and mechanical resonance when possible. We develop platforms utilizing passive wing rotation, where the wing leading edge is driven and the trailing edge is allowed to rotate based on elastic energy storage, wing aerodynamics, and inertial effects. Wing flapping motion is allowed to resonate through the choice of cantilever actuator or added elastic element. Systems are constructed at two different size scales, using piezoelectric actuators and motors to drive the wing leading edge. In this work the design of several controllable flapping flight micro aerial vehicles is discussed and platform underactuation, control development, and active and passive stability is examined. At under one gram, both a 700 mg and 160 mg system are constructed with a single piezoelectric actuator driving each wing. Design considerations including structure rigidity, controllability and mass centralization are considered, with body finite element analysis and wing coupling tests performed. The constructed 160 mg prototype is shown to achieve a lift-to-weight ratio of ∼3/8. With an actuator driving each wing, the system is capable of producing altitude controlling forces as well as pitch and roll torques with a change in wing flapping amplitude. An alternative means of generating wing asymmetry for lift control is proposed and implemented with a shape memory based flexural hinge. Lift control is demonstrated on a modified flapping platform with an application of heat. At a larger 3 and 7 grams, a two and four wing motor-driven flapping platform is designed and constructed. With the use of an elastic element in parallel with the flapping motion, the motor driven design is able to resonate, resulting in a novel and simple liftoff capable system. Motor, flapping frequency, and wing size are chosen based on impedance matching criteria, and further experimentally optimized. Control of both piezo and motor-driven platforms is demonstrated in both simulation and in limited control experiments with a developed robust and linear controller respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically Inspired Micro-Flight Research

Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hu...

متن کامل

Modeling and Control of a Dragonfly-like Micro Aerial Vehicle

The purpose of this research is to model and control a dragonflylike flapping wing micro aerial vehicle (FWMAV). It is well known that micro aerial vehicle (MAV) designs can be classified as fixed wing, rotary wing and flapping wing. Fixed wing MAV is capable of fast forward flight, which is suitable for flying outdoor. Rotary wing MAV is suitable for movement at low speed. Recently, flapping w...

متن کامل

An investigation into the longitudinal dynamics and control of a flapping wing micro air vehicle at hovering flight

This paper describes the research into the flight dynamics modelling and flight control of a flapping wing micro aerial vehicle (MAV). The equations of motion based on a multi-body representation of the vehicle and the flapping wings were derived and form the basis for the simulation program, which was developed using MATLAB and SIMULINK. The aerodynamic forces were obtained through experimenta...

متن کامل

A Bio-inspired Wing Driver for the Study of Insect-Scale Flight Aerodynamics

Insect flight studies have advanced our understanding of flight biomechanics and inspire micro-aerial vehicle (MAV) technologies. A challenge of centimeter or millimeter scale flight is that small forces are produced from relatively complex wing motions. We describe the design and fabrication of a millimeter-sized wing flapping mechanism to simultaneously control pitch and stroke of insect and ...

متن کامل

Analysis and Control of Flapping Flight: from biological to robotic insects

Analysis and Control of Flapping Flight: from Biological to Robotic Insects by Luca Schenato Doctor of Philosophy in Engineering Electrical Engineering and Computer Sciences University of California at Berkeley Professor Shankar S. Sastry, Chair This dissertation explores flapping flight as an effective form of locomotion for unmanned micro aerial vehicles (MAVs). Flapping flight is analyzed fr...

متن کامل

NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS

Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012